Telegram Group & Telegram Channel
Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение



tg-me.com/ds_interview_lib/196
Create:
Last Update:

Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/196

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Among the actives, Ascendas REIT sank 0.64 percent, while CapitaLand Integrated Commercial Trust plummeted 1.42 percent, City Developments plunged 1.12 percent, Dairy Farm International tumbled 0.86 percent, DBS Group skidded 0.68 percent, Genting Singapore retreated 0.67 percent, Hongkong Land climbed 1.30 percent, Mapletree Commercial Trust lost 0.47 percent, Mapletree Logistics Trust tanked 0.95 percent, Oversea-Chinese Banking Corporation dropped 0.61 percent, SATS rose 0.24 percent, SembCorp Industries shed 0.54 percent, Singapore Airlines surrendered 0.79 percent, Singapore Exchange slid 0.30 percent, Singapore Press Holdings declined 1.03 percent, Singapore Technologies Engineering dipped 0.26 percent, SingTel advanced 0.81 percent, United Overseas Bank fell 0.39 percent, Wilmar International eased 0.24 percent, Yangzijiang Shipbuilding jumped 1.42 percent and Keppel Corp, Thai Beverage, CapitaLand and Comfort DelGro were unchanged.

Библиотека собеса по Data Science | вопросы с собеседований from nl


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA